Math Insight

Applet: The line integral of a path-dependent vector field

Values of integrals (Show)

The vector field $\dlvf(x,y) = (y,-x)$ and three paths from $\vc{a}=(0,-4)$ (the cyan diamond) to $\vc{b}=(0,4)$ (the magenta diamond) as shown. Path $\dlc$ (shown in blue) is a straight line path from $\vc{a}$ to $\vc{b}$. Paths $\adlc$ (in green) and $\sadlc$ (in red) are clockwise and counterclockwise, respectively, circular path from $\vc{a}$ and to $\vc{b}$. You can drag the colored points, and the corresponding color lines on the slider indicate the line integral of $\dlvf$ from $\vc{a}$ along the path up to the colored point (the highlighted portion of the curve). Even when you drag the points to $\vc{b}$, the values of the line integrals have different values, demonstrating that $\dlvf$ is indeed path-dependent.

Applet file: line_integral_path_dependent_vector_field.ggb

Applet links

This applet is found in the pages

List of all applets

General information about Geogebra Web applets

This applet was created using Geogebra. In most Geogebra applets, you can move objects by dragging them with the mouse. In some, you can enter values with the keyboard. To reset the applet to its original view, click the icon in the upper right hand corner.

You can download the applet onto your own computer so you can use it outside this web page or even modify it to improve it. You simply need to download the above applet file and download the Geogebra program onto your own computer.