Math Insight

Partial derivative practice

Name:
Group members:
Section:
  1. Let $f(z,t) = 5 z \ln{\left (z \right )}$. Calculate the partial derivatives of $f$.

    $\displaystyle \pdiff{ f }{ z } = $

    $\displaystyle \pdiff{ f }{ t } = $

  2. Let $g(s,t) = 8 s^{2} t^{2} + 9 s^{2} + 9 s t^{2}$. Calculate the partial derivatives of $g$.

    $\displaystyle \pdiff{ g }{ s } = $

    $\displaystyle \pdiff{ g }{ t } = $

  3. Let $f(z,y) = 3 e^{8 y + 7 z}$. Calculate the partial derivatives of $f$.

    $\displaystyle \pdiff{ f }{ z } = $

    $\displaystyle \pdiff{ f }{ y } = $

  4. Let $g(t,y) = \left(- 10 y - 10\right) \ln{\left (t + 3 \right )}$. Calculate the partial derivatives of $g$.

    $\displaystyle \pdiff{ g }{ t } = $

    $\displaystyle \pdiff{ g }{ y } = $

  5. Let $f(z,y) = y e^{8 z^{2}}$. Calculate the partial derivatives of $f$.

    $\displaystyle \pdiff{ f }{ z } = $

    $\displaystyle \pdiff{ f }{ y } = $

  6. Let $g(t,s) = 8 e^{9 s} + 10 e^{- 8 t}$. Calculate the partial derivatives of $g$.

    $\displaystyle \pdiff{ g }{ t } = $

    $\displaystyle \pdiff{ g }{ s } = $