$g'(y) = $
Let $g(x,y) = - 4 x^{2} + 2 x y^{2} + 2 x y$. Calculate the partial derivatives of $g$.
$\displaystyle \pdiff{ g }{ x } = $
$\displaystyle \pdiff{ g }{ y } = $
Compute the Jacobian, $D\vc{f}$, of the multivariate function $\vc{f} (x,y)$ below, i.e. compute the matrix of partial derivatives. \[ \vc{f}(x,y) = (10 x^{2} + 4 x y - 4 y^{2}, 4 x ) \]
Given the function \[ f( z ) = \left(z^{3} - 3 z\right) e^{z}, \] calculate the slope of the tangent line at the point $z=-4$.
tangent line slope =
Do not round or approximate your answer.