Math Insight

Quiz 5

Name:
Group members:
Section:
Total points: 8
  1. Compute the derivative, $\frac{dg }{dy }$, of the function $g(y)$ below \[ g(y) = y^{3} e^{5 y}. \]

    $g'(y) = $

  2. Let $g(x,y) = - 4 x^{2} + 2 x y^{2} + 2 x y$. Calculate the partial derivatives of $g$.

    $\displaystyle \pdiff{ g }{ x } = $

    $\displaystyle \pdiff{ g }{ y } = $

  3. Compute the derivative, $\frac{df}{dx}$, of the function $f(x)$ below \[ f(x) = \ln{\left (6 x^{2} + 3 x + 4 \right )}. \]
    $f'(x) = $

  4. Compute the Jacobian, $D\vc{f}$, of the multivariate function $\vc{f} (x,y)$ below, i.e. compute the matrix of partial derivatives. \[ \vc{f}(x,y) = (10 x^{2} + 4 x y - 4 y^{2}, 4 x ) \]



    $D\vc{f}=$




  5. Given the function \[ f( z ) = \left(z^{3} - 3 z\right) e^{z}, \] calculate the slope of the tangent line at the point $z=-4$.

    tangent line slope =

    Do not round or approximate your answer.