Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 120\\5\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.1\\0.1\\0.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.17\\0.69\\1.29\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.653\\0.981\\2.7\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.34\\1.563\\5.135\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}3.434\\2.509\\9.341\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}5.19\\4.087\\16.55\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}8.051\\6.722\\28.83\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}12.76\\11.14\\49.69\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}20.55\\18.54\\85.05\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}33.53\\30.99\\144.9\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}55.23\\51.94\\246.0\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.6\\0.7\\0.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.09\\1.06\\1.8\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.832\\1.617\\3.963\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.964\\2.532\\7.764\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.736\\4.041\\14.35\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}8.565\\6.547\\25.68\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}13.15\\10.73\\45.01\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}20.66\\17.72\\77.9\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}33.06\\29.45\\133.7\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}53.68\\49.16\\228.1\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}88.09\\82.3\\387.8\end{matrix}\right]\end{gather*}