Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 60\\4\end{bmatrix}$.
Hide help
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.5\\1.9\\1.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.05\\4.45\\3.38\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.667\\7.633\\5.32\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.628\\12.66\\8.514\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.194\\20.66\\13.67\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}6.728\\33.48\\22.0\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}10.82\\54.07\\35.42\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}17.41\\87.23\\57.05\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}28.05\\140.6\\91.91\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}45.18\\226.6\\148.1\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}72.79\\365.2\\238.6\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.9\\0.1\\1.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.97\\2.79\\2.92\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.459\\5.609\\4.448\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.217\\9.883\\7.029\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}3.477\\16.54\\11.22\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}5.532\\27.1\\18.01\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}8.862\\43.99\\28.96\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}14.24\\71.11\\46.62\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}22.92\\114.7\\75.08\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}36.91\\185.0\\120.9\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}59.45\\298.2\\194.9\end{matrix}\right]\end{gather*}