Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 190\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.1\\0.2\\0.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.26\\0.6\\0.33\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.205\\1.786\\0.177\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.4159\\3.753\\0.1146\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}0.8452\\7.42\\0.1591\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}1.669\\14.55\\0.3013\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}3.275\\28.53\\0.5911\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}6.42\\55.92\\1.16\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}12.58\\109.6\\2.274\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}24.67\\214.9\\4.458\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}48.36\\421.3\\8.738\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.1\\1.0\\1.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.61\\5.54\\0.9\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.32\\12.27\\0.453\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.763\\24.39\\0.5319\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.484\\47.85\\0.9884\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}10.77\\93.79\\1.942\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}21.1\\183.8\\3.812\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}41.37\\360.4\\7.475\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}81.1\\706.5\\14.65\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}159.0\\1385.0\\28.73\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}311.6\\2715.0\\56.31\end{matrix}\right]\end{gather*}