For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.5\\1.3\\1.4\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.69\\1.94\\3.98\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.391\\3.35\\8.564\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.8\\6.691\\17.24\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.625\\13.45\\34.62\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}11.3\\27.02\\69.54\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}22.7\\54.27\\139.7\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}45.6\\109.0\\280.6\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}91.61\\219.0\\563.8\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}184.0\\440.0\\1133.0\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}369.7\\883.8\\2275.0\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.3\\1.1\\0.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.47\\1.28\\2.78\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.953\\2.286\\5.872\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.917\\4.582\\11.8\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}3.852\\9.208\\23.71\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}7.738\\18.5\\47.62\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}15.55\\37.16\\95.66\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}31.23\\74.65\\192.2\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}62.73\\150.0\\386.1\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}126.0\\301.3\\775.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}253.2\\605.2\\1558.0\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 130\\4\end{bmatrix}$.