Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 140\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.4\\0.1\\1.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.09\\0.6\\0.86\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.571\\0.824\\1.311\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.425\\1.184\\1.664\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.557\\1.612\\2.234\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}6.106\\2.184\\2.986\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}8.191\\2.941\\4.007\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}11.0\\3.956\\5.379\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}14.77\\5.316\\7.224\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}19.84\\7.142\\9.702\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}26.65\\9.595\\13.03\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.2\\1.5\\0.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.13\\1.32\\1.08\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.279\\1.488\\1.569\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.592\\1.818\\2.243\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}6.281\\2.352\\3.066\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}8.496\\3.108\\4.153\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}11.44\\4.147\\5.595\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}15.39\\5.556\\7.526\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}20.68\\7.455\\10.11\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}27.79\\10.01\\13.59\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}37.33\\13.44\\18.26\end{matrix}\right]\end{gather*}