For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.2\\0.2\\1.4\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.24\\1.36\\1.86\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.452\\1.884\\2.12\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.27\\2.63\\3.8\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.038\\4.114\\5.273\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}7.463\\6.002\\8.015\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}11.1\\8.994\\11.9\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}16.56\\13.38\\17.71\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}24.65\\19.93\\26.41\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}36.72\\29.69\\39.31\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}54.68\\44.21\\58.56\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.6\\0.7\\1.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.58\\1.28\\1.15\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.03\\1.578\\2.412\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.116\\2.575\\3.279\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.65\\3.729\\4.964\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}6.891\\5.584\\7.411\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}10.29\\8.32\\11.0\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}15.31\\12.38\\16.41\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}22.81\\18.45\\24.43\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}33.98\\27.47\\36.39\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}50.61\\40.92\\54.2\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 80\\4\end{bmatrix}$.