Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\4\end{bmatrix}$.
Hide help
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.5\\0.3\\1.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.16\\0.96\\4.09\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.744\\1.752\\11.35\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.595\\3.098\\27.83\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}11.63\\5.466\\63.93\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}20.52\\9.643\\141.0\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}36.19\\17.01\\302.2\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}63.84\\30.0\\634.8\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}112.6\\52.92\\1313.0\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}198.6\\93.35\\2684.0\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}350.4\\164.7\\5432.0\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.1\\1.6\\1.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.24\\1.67\\4.99\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}5.892\\2.789\\15.03\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}10.42\\4.898\\38.45\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}18.38\\8.637\\90.51\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}32.42\\15.24\\202.8\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}57.19\\26.87\\439.6\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}100.9\\47.4\\931.1\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}177.9\\83.62\\1938.0\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}313.9\\147.5\\3981.0\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}553.6\\260.2\\8089.0\end{matrix}\right]\end{gather*}