For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.4\\1.2\\1.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.82\\1.8\\3.92\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.534\\2.57\\6.95\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.573\\3.747\\11.13\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.124\\5.453\\17.12\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}7.404\\7.959\\25.74\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}10.75\\11.62\\38.23\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}15.67\\16.99\\56.41\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}22.86\\24.84\\82.91\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}33.39\\36.31\\121.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}48.79\\53.1\\178.2\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.6\\0.4\\0.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.4\\1.62\\1.42\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.114\\1.888\\4.334\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.801\\2.902\\7.51\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}3.993\\4.143\\12.26\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}5.695\\6.063\\18.89\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}8.23\\8.834\\28.49\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}11.94\\12.91\\42.36\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}17.4\\18.86\\62.55\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}25.38\\27.57\\91.98\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}37.06\\40.31\\134.9\end{matrix}\right]\end{gather*}
Hide help
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 90\\5\end{bmatrix}$.