Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 110\\5\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\0.3\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.23\\0.6\\0.26\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.538\\1.269\\0.616\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.227\\2.795\\1.412\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}2.779\\6.248\\3.202\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}6.273\\14.04\\7.234\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}14.15\\31.62\\16.32\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}31.9\\71.25\\36.79\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}71.91\\160.6\\82.95\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}162.1\\362.0\\187.0\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}365.4\\816.0\\421.5\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.4\\1.5\\0.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.73\\4.61\\0.73\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.405\\7.526\\2.624\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.888\\14.88\\6.675\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}13.65\\31.86\\15.65\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}31.07\\70.49\\35.77\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}70.28\\157.8\\81.01\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}158.6\\354.9\\182.9\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}357.7\\799.4\\412.6\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}806.5\\1801.0\\930.2\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}1818.0\\4060.0\\2097.0\end{matrix}\right]\end{gather*}