For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.5\\1.1\\2.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.1\\1.56\\2.7\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.23\\2.256\\5.61\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.191\\4.576\\10.01\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}13.34\\8.18\\18.21\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}24.27\\14.9\\33.25\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}44.2\\27.19\\60.55\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}80.56\\49.53\\110.4\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}146.8\\90.25\\201.1\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}267.5\\164.5\\366.4\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}487.5\\299.7\\667.7\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.5\\1.5\\1.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.7\\0.9\\3.1\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.78\\2.53\\5.48\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.197\\4.467\\9.805\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}13.18\\8.03\\18.02\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}23.9\\14.73\\32.78\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}43.61\\26.81\\59.73\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}79.47\\48.85\\108.9\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}144.8\\89.03\\198.4\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}263.9\\162.2\\361.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}480.8\\295.6\\658.7\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 170\\4\end{bmatrix}$.