For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.7\\0.8\\0.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.11\\1.15\\0.58\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.715\\1.717\\0.695\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.816\\2.492\\0.8667\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}9.647\\3.541\\1.116\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}13.5\\4.966\\1.47\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}18.75\\6.911\\1.967\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}25.95\\9.571\\2.658\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}35.82\\13.22\\3.615\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}49.36\\18.22\\4.937\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}67.96\\25.1\\6.759\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.3\\0.9\\0.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.59\\1.04\\0.79\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.533\\1.641\\0.894\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.901\\2.502\\1.058\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}10.03\\3.661\\1.308\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}14.24\\5.222\\1.674\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}19.96\\7.34\\2.197\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}27.76\\10.23\\2.931\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}38.44\\14.18\\3.953\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}53.08\\19.59\\5.371\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}73.17\\27.01\\7.33\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 70\\5\end{bmatrix}$.