For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.2\\0.4\\1.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.4\\1.37\\2.41\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.257\\2.801\\4.164\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.3572\\5.273\\7.281\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}0.6345\\9.71\\13.01\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}1.161\\17.75\\23.49\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}2.123\\32.36\\42.63\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}3.873\\58.94\\77.5\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}7.056\\107.3\\141.0\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}12.85\\195.4\\256.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}23.39\\355.6\\467.1\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.2\\0.3\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.09\\0.56\\0.63\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.083\\1.009\\1.26\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.1258\\1.824\\2.352\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}0.2201\\3.309\\4.317\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}0.397\\6.016\\7.881\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}0.7207\\10.95\\14.36\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}1.311\\19.92\\26.15\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}2.385\\36.26\\47.61\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}4.342\\66.0\\86.68\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}7.903\\120.1\\157.8\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 70\\4\end{bmatrix}$.