For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.0\\0.1\\1.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.62\\1.99\\2.13\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.77\\2.543\\2.975\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.9706\\3.352\\4.046\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}1.253\\4.431\\5.44\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}1.638\\5.87\\7.27\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}2.157\\7.785\\9.686\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}2.851\\10.33\\12.88\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}3.777\\13.71\\17.12\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}5.008\\18.2\\22.75\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}6.645\\24.16\\30.21\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.5\\0.4\\1.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.38\\1.36\\1.62\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.5\\1.772\\2.18\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.6544\\2.349\\2.912\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}0.8624\\3.115\\3.878\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}1.14\\4.134\\5.158\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}1.511\\5.487\\6.854\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}2.004\\7.284\\9.104\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}2.659\\9.67\\12.09\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}3.529\\12.84\\16.06\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}4.685\\17.05\\21.32\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 60\\4\end{bmatrix}$.