For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.4\\0.6\\1.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.24\\2.04\\1.86\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.444\\2.712\\4.476\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.177\\3.36\\8.354\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}3.531\\4.629\\13.72\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}5.679\\7.014\\21.56\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}8.988\\11.02\\33.58\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}14.11\\17.4\\52.43\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}22.1\\27.37\\82.05\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}34.62\\42.95\\128.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}54.24\\67.31\\201.5\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.5\\1.0\\1.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.47\\2.4\\3.02\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.873\\3.204\\6.264\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.884\\4.17\\11.04\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.644\\5.963\\17.84\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}7.415\\9.151\\27.96\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}11.7\\14.39\\43.62\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}18.35\\22.67\\68.17\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}28.75\\35.62\\106.7\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}45.04\\55.87\\167.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}70.57\\87.57\\262.2\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 90\\4\end{bmatrix}$.