For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.4\\0.6\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.22\\0.79\\1.13\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.858\\0.941\\1.358\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.089\\1.899\\2.456\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}1.962\\2.912\\3.97\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}3.161\\4.906\\6.558\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}5.232\\8.039\\10.81\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}8.616\\13.26\\17.8\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}14.2\\21.85\\29.34\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}23.39\\35.99\\48.34\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}38.54\\59.31\\79.64\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.5\\1.3\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.43\\1.23\\1.93\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.447\\1.63\\2.288\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.844\\3.22\\4.179\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}3.336\\4.938\\6.732\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}5.361\\8.331\\11.13\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}8.883\\13.64\\18.34\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}14.62\\22.51\\30.22\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}24.09\\37.08\\49.79\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}39.7\\61.09\\82.04\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}65.41\\100.7\\135.2\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\5\end{bmatrix}$.