Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\3\end{bmatrix}$.
Hide help
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.2\\0.4\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.14\\0.44\\0.66\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.322\\0.924\\1.322\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.739\\1.876\\2.727\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}9.707\\3.852\\5.556\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}19.85\\7.867\\11.39\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}40.61\\16.11\\23.27\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}83.07\\32.94\\47.64\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}170.0\\67.4\\97.43\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}347.7\\137.9\\199.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}711.3\\282.1\\407.8\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.9\\1.9\\0.4\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}4.41\\1.54\\3.05\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}9.585\\3.974\\4.953\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}18.94\\7.337\\11.41\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}39.43\\15.81\\22.05\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}79.98\\31.54\\46.42\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}164.3\\65.34\\93.63\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}335.4\\132.8\\192.9\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}687.0\\272.6\\393.2\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}1405.0\\556.8\\805.9\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}2874.0\\1140.0\\1647.0\end{matrix}\right]\end{gather*}