For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\0.3\\1.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.8\\0.12\\0.4\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.888\\0.276\\0.44\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.041\\0.3492\\0.4872\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}1.216\\0.417\\0.5625\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}1.421\\0.4899\\0.6551\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}1.66\\0.5732\\0.7648\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}1.94\\0.67\\0.8935\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}2.267\\0.7829\\1.044\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}2.648\\0.9149\\1.22\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}3.095\\1.069\\1.425\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.8\\1.4\\1.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.75\\0.96\\1.17\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.169\\1.113\\1.451\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.706\\1.285\\1.703\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.33\\1.497\\1.993\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}5.06\\1.748\\2.33\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}5.912\\2.042\\2.723\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}6.908\\2.386\\3.182\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}8.072\\2.788\\3.718\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}9.431\\3.258\\4.344\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}11.02\\3.807\\5.076\end{matrix}\right]\end{gather*}
Hide help
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 80\\4\end{bmatrix}$.