For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\1.2\\0.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.72\\0.8\\2.48\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.392\\1.768\\4.128\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.646\\3.151\\7.913\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.96\\5.96\\14.77\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}9.306\\11.16\\27.72\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}17.45\\20.93\\51.98\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}32.73\\39.25\\97.48\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}61.38\\73.61\\182.8\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}115.1\\138.0\\342.9\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}215.9\\258.9\\643.0\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.3\\1.2\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.54\\0.93\\4.46\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.496\\3.125\\7.151\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.677\\5.511\\13.97\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}8.74\\10.51\\26.0\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}16.4\\19.65\\48.85\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}30.75\\36.88\\91.58\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}57.66\\69.15\\171.8\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}108.1\\129.7\\322.1\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}202.8\\243.2\\604.1\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}380.3\\456.1\\1133.0\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\2\end{bmatrix}$.