Hide help
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.8\\1.4\\1.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}4.44\\1.82\\3.02\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}7.58\\3.068\\5.772\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}13.95\\5.395\\10.07\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}24.45\\9.586\\18.11\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}43.77\\17.03\\32.02\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}77.55\\30.28\\57.07\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}138.1\\53.83\\101.3\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}245.3\\95.7\\180.3\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}436.3\\170.1\\320.4\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}775.4\\302.5\\569.6\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\1.4\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.89\\1.06\\1.27\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.514\\1.501\\2.679\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.557\\2.557\\4.732\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}11.51\\4.521\\8.528\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}20.62\\8.026\\15.09\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}36.54\\14.27\\26.89\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}65.07\\25.36\\47.75\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}115.6\\45.09\\84.94\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}205.6\\80.16\\151.0\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}365.4\\142.5\\268.4\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 60\\4\end{bmatrix}$.