For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.6\\0.0\\0.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.96\\1.86\\3.24\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.808\\2.634\\4.794\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.846\\5.365\\9.623\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}9.345\\9.937\\17.88\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}17.53\\18.82\\33.85\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}33.11\\35.47\\63.79\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}62.43\\66.91\\120.3\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}117.8\\126.2\\227.0\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}222.1\\238.0\\428.1\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}418.9\\448.9\\807.4\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.9\\0.3\\0.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.5\\2.38\\4.16\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.756\\3.672\\6.656\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.66\\7.299\\13.1\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}12.75\\13.6\\24.46\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}23.97\\25.72\\46.26\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}45.25\\48.48\\87.19\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}85.32\\91.45\\164.5\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}160.9\\172.5\\310.2\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}303.5\\325.3\\585.1\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}572.5\\613.5\\1103.0\end{matrix}\right]\end{gather*}
Hide help
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 150\\4\end{bmatrix}$.