Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 180\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.5\\0.0\\0.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.23\\1.08\\2.76\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.877\\2.808\\3.354\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.109\\4.115\\7.76\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}11.13\\9.063\\15.06\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}22.28\\17.41\\28.79\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}43.38\\33.69\\56.91\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}84.5\\66.25\\110.7\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}165.2\\129.0\\216.2\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}322.4\\251.9\\422.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}629.5\\492.0\\824.2\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\1.3\\2.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.1\\1.77\\1.42\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.843\\2.153\\5.338\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.66\\6.023\\9.174\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}14.04\\10.61\\17.72\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}26.81\\20.85\\35.53\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}52.37\\41.23\\68.49\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}102.6\\79.87\\134.1\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}199.9\\156.3\\261.9\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}390.4\\305.1\\511.0\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}762.2\\595.5\\997.9\end{matrix}\right]\end{gather*}