Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 140\\5\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.9\\1.7\\0.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.48\\3.02\\2.79\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.466\\3.662\\4.48\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.305\\5.675\\7.721\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}3.886\\9.135\\12.94\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}6.476\\15.07\\21.62\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}10.8\\25.02\\36.09\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}18.02\\41.68\\60.19\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}30.05\\69.47\\100.4\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}50.11\\115.8\\167.4\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}83.56\\193.1\\279.2\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.0\\0.6\\0.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.16\\1.32\\1.22\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.636\\1.556\\1.904\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.9808\\2.423\\3.296\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}1.659\\3.897\\5.518\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}2.763\\6.428\\9.226\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}4.609\\10.68\\15.4\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}7.687\\17.78\\25.68\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}12.82\\29.64\\42.83\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}21.38\\49.41\\71.42\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}35.65\\82.4\\119.1\end{matrix}\right]\end{gather*}