Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 70\\2\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.8\\0.4\\1.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.44\\1.04\\0.76\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.44\\3.064\\1.104\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.834\\4.278\\1.849\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}6.005\\6.401\\2.79\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}9.105\\9.845\\4.237\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}13.87\\15.01\\6.47\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}21.17\\22.88\\9.866\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}32.27\\34.89\\15.04\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}49.21\\53.21\\22.94\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}75.05\\81.14\\34.98\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.2\\1.8\\0.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.93\\2.28\\0.98\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.157\\3.298\\1.462\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.752\\5.136\\2.206\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}7.229\\7.833\\3.373\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}11.04\\11.93\\5.145\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}16.83\\18.19\\7.844\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}25.66\\27.75\\11.96\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}39.13\\42.31\\18.24\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}59.67\\64.52\\27.82\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}91.0\\98.38\\42.42\end{matrix}\right]\end{gather*}