For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.7\\1.0\\1.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.38\\1.66\\1.44\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.162\\3.376\\2.436\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.947\\6.36\\4.289\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}14.86\\11.99\\7.882\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}27.87\\22.48\\14.65\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}52.19\\42.13\\27.36\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}97.75\\78.92\\51.19\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}183.1\\147.8\\95.84\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}342.9\\276.8\\179.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}642.1\\518.4\\336.1\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.2\\0.7\\2.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.13\\1.22\\1.82\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.592\\2.862\\2.552\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.006\\5.528\\4.051\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}13.12\\10.54\\7.148\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}24.63\\19.84\\13.07\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}46.15\\37.24\\24.28\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}86.46\\69.79\\45.33\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}161.9\\130.7\\84.81\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}303.3\\244.8\\158.8\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}568.0\\458.6\\297.3\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 190\\4\end{bmatrix}$.
Hide help