Hide help
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 130\\5\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.3\\0.9\\2.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.78\\3.53\\1.05\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.593\\5.044\\2.08\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.996\\7.465\\3.146\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}2.77\\10.98\\4.676\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}4.0\\16.13\\6.891\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}5.846\\23.7\\10.13\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}8.574\\34.81\\14.89\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}12.59\\51.14\\21.87\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}18.49\\75.12\\32.13\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}27.16\\110.4\\47.2\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\0.4\\0.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.46\\1.28\\0.44\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.496\\1.82\\0.772\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.6836\\2.686\\1.142\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}0.981\\3.946\\1.685\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}1.431\\5.798\\2.479\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}2.098\\8.517\\3.643\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}3.08\\12.51\\5.351\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}4.524\\18.38\\7.861\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}6.645\\27.0\\11.55\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}9.761\\39.66\\16.96\end{matrix}\right]\end{gather*}