For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.8\\1.1\\0.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.05\\0.38\\2.76\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}5.216\\0.628\\3.76\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.624\\0.8776\\6.224\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}12.37\\1.42\\9.704\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}19.4\\2.225\\15.39\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}30.7\\3.522\\24.28\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}48.47\\5.56\\38.36\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}76.57\\8.783\\60.58\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}120.9\\13.87\\95.69\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}191.0\\21.91\\151.1\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.8\\1.6\\1.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.73\\0.66\\4.17\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}8.033\\0.966\\6.037\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}12.16\\1.401\\9.806\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}19.52\\2.241\\15.37\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}30.71\\3.522\\24.33\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}48.56\\5.571\\38.41\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}76.67\\8.795\\60.67\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}121.1\\13.89\\95.83\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}191.3\\21.95\\151.4\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}302.2\\34.66\\239.1\end{matrix}\right]\end{gather*}
Hide help
Assume that each adult toad produces 40 eggs per year. Adults survive with probability 0.3 each year. Tadpoles survive and mature into adults with probability 0.08, and survive and remain tadpoles with probability 0.07.
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 170\\47\end{bmatrix}$.