Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 120\\3\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.3\\1.8\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.28\\2.04\\0.37\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.408\\2.467\\0.528\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.5856\\3.174\\0.7099\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}0.8022\\4.189\\0.9438\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}1.076\\5.569\\1.254\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}1.434\\7.413\\1.668\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}1.908\\9.866\\2.219\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}2.538\\13.13\\2.953\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}3.377\\17.47\\3.929\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}4.494\\23.25\\5.228\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.0\\0.8\\0.4\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.72\\2.24\\0.5\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.688\\3.262\\0.696\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.832\\4.342\\0.9518\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}1.094\\5.733\\1.279\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}1.461\\7.599\\1.706\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}1.949\\10.1\\2.271\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}2.596\\13.43\\3.021\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}3.455\\17.87\\4.02\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}4.598\\23.78\\5.349\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}6.118\\31.65\\7.117\end{matrix}\right]\end{gather*}