Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\5\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.8\\1.5\\1.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.73\\1.05\\2.63\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.104\\1.623\\4.636\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.441\\2.809\\8.08\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}9.5\\4.899\\14.08\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}16.57\\8.545\\24.56\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}28.9\\14.9\\42.83\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}50.4\\25.99\\74.69\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}87.89\\45.32\\130.2\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}153.3\\79.04\\227.1\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}267.3\\137.8\\396.1\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.5\\1.3\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.8\\0.57\\0.98\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.319\\0.705\\1.879\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.262\\1.171\\3.323\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}3.928\\2.027\\5.81\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}6.844\\3.53\\10.14\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}11.93\\6.153\\17.68\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}20.81\\10.73\\30.84\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}36.29\\18.71\\53.77\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}63.28\\32.63\\93.78\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}110.3\\56.91\\163.5\end{matrix}\right]\end{gather*}