Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 70\\5\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\0.7\\0.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.44\\0.78\\0.34\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.406\\0.772\\0.746\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.755\\1.149\\1.335\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}6.016\\1.885\\2.17\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}9.715\\3.063\\3.491\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}15.69\\4.947\\5.632\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}25.33\\7.985\\9.092\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}40.89\\12.89\\14.68\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}66.02\\20.81\\23.7\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}106.6\\33.59\\38.26\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\1.3\\2.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.66\\2.06\\1.04\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}6.396\\2.124\\1.984\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}10.05\\3.09\\3.55\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}16.09\\5.035\\5.795\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}25.96\\8.183\\9.332\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}41.93\\13.22\\15.05\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}67.69\\21.34\\24.3\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}109.3\\34.45\\39.23\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}176.4\\55.61\\63.33\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}284.8\\89.78\\102.2\end{matrix}\right]\end{gather*}
Hide help