For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.4\\2.0\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.58\\2.9\\2.62\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.262\\6.596\\5.83\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.654\\13.65\\10.84\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}6.188\\25.85\\19.22\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}10.65\\46.73\\33.59\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}18.43\\82.6\\58.41\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}31.96\\144.5\\101.4\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}55.44\\251.6\\176.0\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}96.19\\437.3\\305.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}166.9\\759.3\\530.1\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.1\\0.3\\0.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.31\\1.8\\2.47\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.935\\5.403\\5.191\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.167\\11.75\\9.519\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.387\\22.5\\16.81\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}9.287\\40.77\\29.33\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}16.08\\72.08\\50.98\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}27.88\\126.1\\88.51\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}48.38\\219.6\\153.6\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}83.94\\381.6\\266.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}145.6\\662.5\\462.6\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 110\\4\end{bmatrix}$.