Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 160\\5\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.2\\0.9\\0.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.95\\0.72\\2.61\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.828\\0.873\\4.551\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.621\\1.498\\7.328\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}10.95\\2.585\\12.0\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}18.09\\4.32\\19.89\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}29.97\\7.155\\33.02\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}49.72\\11.85\\54.79\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}82.47\\19.66\\90.87\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}136.8\\32.6\\150.7\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}226.8\\54.07\\249.9\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\1.3\\1.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.31\\0.55\\4.02\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}5.158\\0.913\\5.99\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}8.609\\1.913\\9.256\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}13.97\\3.348\\15.22\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}23.03\\5.531\\25.35\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}38.2\\9.121\\42.13\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}63.4\\15.11\\69.88\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}105.2\\25.06\\115.9\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}174.4\\41.58\\192.2\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}289.3\\68.96\\318.7\end{matrix}\right]\end{gather*}