Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.5\\0.2\\1.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.28\\0.93\\0.66\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.667\\2.122\\0.526\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.668\\3.617\\0.6245\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}9.705\\5.623\\0.8542\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}14.26\\8.466\\1.227\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}21.02\\12.6\\1.794\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}31.03\\18.67\\2.64\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}45.85\\27.61\\3.895\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}67.74\\40.82\\5.753\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}100.1\\60.33\\8.5\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.6\\2.0\\0.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.11\\1.89\\0.21\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.455\\2.377\\0.274\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.236\\3.311\\0.4277\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}7.8\\4.786\\0.6519\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}11.56\\7.014\\0.9755\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}17.1\\10.33\\1.449\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}25.28\\15.25\\2.145\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}37.36\\22.53\\3.171\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}55.22\\33.28\\4.688\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}81.6\\49.18\\6.928\end{matrix}\right]\end{gather*}