For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.4\\0.7\\1.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.97\\1.91\\2.06\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.14\\3.337\\3.276\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.419\\5.636\\6.076\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}8.805\\9.846\\11.69\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}17.23\\17.84\\22.58\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}33.39\\33.18\\43.56\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}64.41\\62.63\\83.85\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}124.0\\119.2\\161.2\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}238.3\\227.9\\309.8\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}457.9\\436.5\\595.0\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.2\\1.0\\0.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.59\\1.52\\1.05\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.353\\2.302\\1.958\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.821\\3.707\\3.82\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.637\\6.37\\7.453\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}11.04\\11.48\\14.46\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}21.4\\21.3\\27.91\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}41.3\\40.18\\53.75\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}79.49\\76.45\\103.4\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}152.8\\146.1\\198.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}293.6\\279.9\\381.5\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 90\\5\end{bmatrix}$.