Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 130\\5\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.2\\2.0\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.64\\1.62\\2.36\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.306\\5.398\\5.126\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.172\\9.484\\8.298\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}13.56\\17.25\\16.21\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}25.01\\33.11\\30.64\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}47.31\\62.02\\57.21\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}88.94\\116.4\\107.7\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}167.0\\219.1\\202.5\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}314.1\\411.7\\380.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}590.4\\773.9\\715.5\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.3\\0.1\\2.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.0\\3.51\\2.65\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.859\\4.266\\3.513\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.541\\8.15\\8.088\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}11.91\\16.25\\14.84\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}22.97\\29.86\\27.49\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}42.95\\56.19\\52.11\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}80.64\\105.9\\97.83\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}151.7\\198.8\\183.8\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}285.2\\373.8\\345.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}536.0\\702.7\\649.6\end{matrix}\right]\end{gather*}