For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.2\\0.4\\1.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.38\\0.32\\2.05\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.278\\1.72\\3.441\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.64\\3.078\\6.589\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}8.817\\6.184\\12.58\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}17.03\\11.82\\24.2\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}32.75\\22.8\\46.55\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}63.03\\43.85\\89.58\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}121.3\\84.4\\172.4\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}233.3\\162.4\\331.7\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}449.0\\312.5\\638.2\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.3\\0.8\\1.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.17\\0.52\\3.15\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.535\\2.708\\5.327\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.218\\4.784\\10.23\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}13.7\\9.618\\19.54\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}26.48\\18.37\\37.62\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}50.89\\35.44\\72.35\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}97.96\\68.16\\139.2\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}188.5\\131.2\\267.9\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}362.7\\252.4\\515.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}697.8\\485.7\\991.8\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 80\\5\end{bmatrix}$.