Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 110\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.4\\1.6\\0.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.88\\1.28\\1.12\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.288\\4.752\\1.744\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}8.53\\7.952\\3.504\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}15.99\\15.38\\6.544\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}30.25\\28.96\\12.39\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}57.15\\54.75\\23.41\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}108.0\\103.5\\44.24\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}204.1\\195.5\\83.61\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}385.7\\369.5\\158.0\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}729.0\\698.3\\298.6\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.4\\0.7\\0.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.05\\2.17\\0.49\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.919\\2.268\\1.204\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.163\\5.128\\2.107\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}9.869\\9.399\\4.046\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}18.62\\17.85\\7.626\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}35.19\\33.71\\14.42\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}66.51\\63.71\\27.24\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}125.7\\120.4\\51.48\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}237.5\\227.5\\97.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}448.9\\430.0\\183.9\end{matrix}\right]\end{gather*}