Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 120\\2\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.1\\1.9\\1.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.67\\1.56\\3.13\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.138\\1.761\\4.277\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.666\\2.163\\5.408\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}3.315\\2.689\\6.739\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}4.122\\3.345\\8.38\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}5.125\\4.159\\10.42\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}6.373\\5.172\\12.96\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}7.925\\6.431\\16.11\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}9.854\\7.996\\20.03\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}12.25\\9.943\\24.91\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.8\\1.9\\0.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.37\\1.72\\4.41\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.886\\2.249\\5.869\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.561\\2.866\\7.258\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.42\\3.583\\8.994\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}5.495\\4.459\\11.17\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}6.833\\5.545\\13.89\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}8.497\\6.895\\17.27\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}10.57\\8.573\\21.48\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}13.14\\10.66\\26.71\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}16.34\\13.26\\33.21\end{matrix}\right]\end{gather*}