For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.4\\1.6\\1.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}5.18\\1.87\\1.37\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}7.644\\5.26\\1.333\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}13.82\\7.805\\1.985\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}22.0\\13.81\\2.951\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}36.66\\22.06\\4.828\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}59.65\\36.65\\7.792\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}98.01\\59.68\\12.78\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}160.3\\98.01\\20.89\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}262.6\\160.3\\34.22\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}429.9\\262.7\\56.02\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.9\\0.0\\0.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.14\\1.71\\0.0\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.078\\1.197\\0.342\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.001\\2.992\\0.4788\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}7.261\\4.044\\0.9337\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}11.33\\7.219\\1.462\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}18.95\\11.35\\2.467\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}30.72\\18.93\\3.998\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}50.53\\30.74\\6.585\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}82.57\\50.53\\10.76\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}135.3\\82.59\\17.64\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 90\\2\end{bmatrix}$.