For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.3\\0.1\\2.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.4\\1.07\\3.58\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.227\\2.97\\4.216\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.3651\\5.867\\6.284\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}0.6962\\10.76\\10.85\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}1.285\\19.48\\19.47\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}2.334\\35.19\\35.17\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}4.219\\63.57\\63.54\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}7.622\\114.8\\114.8\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}13.77\\207.4\\207.4\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}24.88\\374.7\\374.6\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.1\\1.2\\1.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.45\\2.27\\3.8\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.362\\4.743\\5.65\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.5829\\8.936\\9.277\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}1.069\\16.28\\16.36\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}1.949\\29.44\\29.44\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}3.529\\53.19\\53.17\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}6.378\\96.09\\96.06\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}11.52\\173.6\\173.5\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}20.82\\313.6\\313.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}37.6\\566.5\\566.4\end{matrix}\right]\end{gather*}
Hide help
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 140\\5\end{bmatrix}$.