Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 150\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.5\\0.2\\1.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.66\\1.12\\0.39\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.988\\1.355\\0.507\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.833\\2.067\\0.8219\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}11.21\\3.346\\1.343\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}18.31\\5.459\\2.193\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}29.89\\8.911\\3.581\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}48.79\\14.55\\5.845\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}79.65\\23.75\\9.542\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}130.0\\38.77\\15.58\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}212.3\\63.29\\25.43\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.6\\0.2\\1.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.32\\1.97\\0.71\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}7.434\\2.485\\0.939\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}12.66\\3.823\\1.522\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}20.76\\6.195\\2.487\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}33.9\\10.11\\4.061\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}55.34\\16.5\\6.629\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}90.34\\26.93\\10.82\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}147.5\\43.97\\17.67\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}240.8\\71.78\\28.84\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}393.0\\117.2\\47.08\end{matrix}\right]\end{gather*}