Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 80\\4\end{bmatrix}$.
Hide help
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\0.0\\0.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.31\\0.34\\0.54\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.467\\1.27\\0.788\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.7691\\3.27\\1.546\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}1.484\\7.58\\3.333\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}3.13\\17.02\\7.346\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}6.831\\37.84\\16.26\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}15.07\\83.92\\36.03\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}33.35\\186.0\\79.83\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}73.88\\412.1\\176.9\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}163.7\\913.0\\391.9\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.3\\1.3\\1.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.76\\4.96\\2.87\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.876\\12.6\\5.832\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.607\\29.04\\12.69\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}11.91\\65.05\\28.04\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}26.05\\144.6\\62.1\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}57.53\\320.5\\137.6\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}127.4\\710.3\\304.8\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}282.1\\1574.0\\675.4\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}625.0\\3487.0\\1496.0\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}1385.0\\7725.0\\3316.0\end{matrix}\right]\end{gather*}