Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 90\\3\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\0.5\\1.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.71\\1.61\\0.24\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.445\\1.041\\0.698\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.693\\1.63\\1.207\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}12.79\\2.914\\2.292\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}24.39\\5.495\\4.358\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}46.48\\10.45\\8.302\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}88.58\\19.9\\15.82\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}168.8\\37.92\\30.15\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}321.7\\72.27\\57.45\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}613.0\\137.7\\109.5\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.8\\1.3\\1.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.15\\2.08\\0.54\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}6.257\\1.74\\1.207\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}12.07\\2.86\\2.172\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}23.05\\5.227\\4.125\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}43.94\\9.89\\7.849\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}83.74\\18.82\\14.96\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}159.6\\35.85\\28.5\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}304.1\\68.32\\54.31\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}579.5\\130.2\\103.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}1104.0\\248.1\\197.2\end{matrix}\right]\end{gather*}