Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.7\\0.1\\1.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.8\\1.2\\2.14\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.0\\1.996\\4.13\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.996\\3.55\\7.159\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}8.546\\6.137\\12.4\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}14.68\\10.59\\21.39\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}25.28\\18.26\\36.86\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}43.53\\31.46\\63.51\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}74.99\\54.19\\109.4\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}129.2\\93.36\\188.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}222.5\\160.8\\324.7\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.4\\1.3\\0.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.7\\1.07\\2.93\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.77\\2.517\\4.96\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.287\\4.373\\8.895\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}10.66\\7.631\\15.41\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}18.29\\13.18\\26.61\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}31.47\\22.72\\45.88\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}54.19\\39.15\\79.05\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}93.34\\67.45\\136.2\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}160.8\\116.2\\234.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}277.0\\200.2\\404.2\end{matrix}\right]\end{gather*}