For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.9\\0.0\\0.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.62\\0.85\\1.79\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.641\\1.295\\2.532\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.483\\2.193\\4.239\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.107\\3.581\\6.898\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}6.698\\5.861\\11.28\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}10.95\\9.581\\18.45\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}17.91\\15.66\\30.15\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}29.27\\25.61\\49.29\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}47.85\\41.86\\80.58\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}78.22\\68.43\\131.7\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.4\\1.0\\0.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.94\\1.37\\2.25\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.125\\1.873\\3.462\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.382\\3.012\\5.752\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.579\\4.886\\9.389\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}9.115\\7.98\\15.36\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}14.91\\13.04\\25.1\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}24.37\\21.32\\41.04\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}39.84\\34.85\\67.09\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}65.12\\56.97\\109.7\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}106.5\\93.13\\179.3\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 80\\2\end{bmatrix}$.