For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.7\\0.0\\1.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.45\\3.87\\0.71\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.921\\5.063\\0.458\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.309\\7.556\\0.6295\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}10.85\\11.17\\0.9198\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}16.06\\16.54\\1.361\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}23.77\\24.49\\2.014\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}35.2\\36.26\\2.982\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}52.11\\53.69\\4.414\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}77.15\\79.48\\6.535\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}114.2\\117.7\\9.675\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.9\\0.9\\1.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.59\\3.73\\0.66\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.886\\5.054\\0.457\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.278\\7.518\\0.6257\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}10.8\\11.12\\0.9155\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}15.98\\16.47\\1.354\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}23.66\\24.38\\2.005\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}35.03\\36.09\\2.968\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}51.87\\53.43\\4.394\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}76.79\\79.11\\6.505\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}113.7\\117.1\\9.63\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 100\\5\end{bmatrix}$.