Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 60\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.5\\0.0\\1.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.62\\1.89\\2.91\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.651\\3.75\\3.119\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.829\\5.177\\5.143\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.183\\8.066\\8.317\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}6.533\\12.77\\12.85\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}10.26\\19.91\\20.03\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}16.01\\31.06\\31.33\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}25.0\\48.54\\48.94\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}39.06\\75.81\\76.42\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}61.0\\118.4\\119.4\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.3\\0.7\\0.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.75\\1.37\\2.32\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.299\\2.998\\2.778\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.314\\4.389\\4.255\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}3.508\\6.718\\6.878\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}5.436\\10.6\\10.7\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}8.529\\16.56\\16.67\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}13.32\\25.84\\26.06\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}20.8\\40.37\\40.71\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}32.49\\63.06\\63.57\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}50.74\\98.49\\99.3\end{matrix}\right]\end{gather*}