For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.2\\1.9\\0.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.94\\2.32\\1.0\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.708\\3.77\\1.26\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.312\\5.591\\2.011\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}6.454\\8.538\\2.997\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}9.829\\12.92\\4.569\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}14.88\\19.6\\6.915\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}22.58\\29.71\\10.49\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}34.23\\45.05\\15.9\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}51.9\\68.31\\24.12\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}78.69\\103.6\\36.57\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.2\\0.1\\0.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.34\\1.44\\0.14\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.508\\1.552\\0.734\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.854\\2.657\\0.8494\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}3.027\\3.881\\1.413\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}4.487\\5.956\\2.082\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}6.853\\8.997\\3.186\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}10.37\\13.66\\4.817\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}15.73\\20.7\\7.311\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}23.85\\31.39\\11.08\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}36.16\\47.6\\16.8\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 130\\4\end{bmatrix}$.